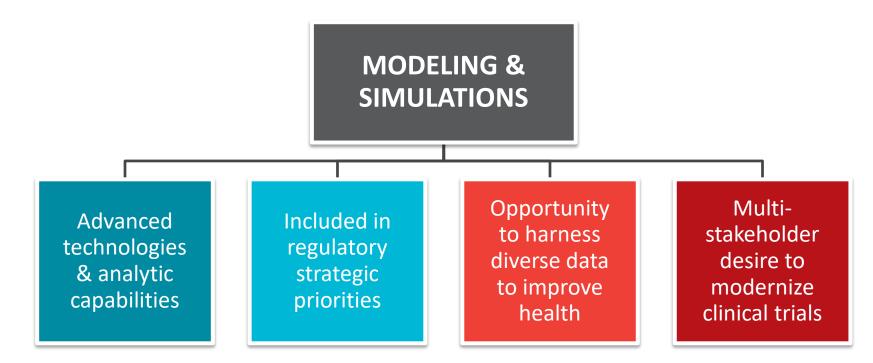


March 6, 2023


Disease Progression Modeling to Advance Clinical Trial Decision Making

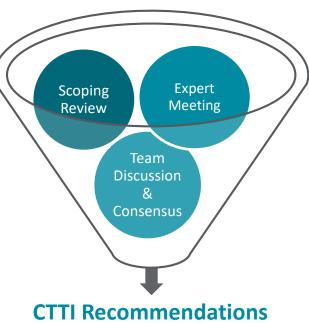
Project Overview

Lindsay Kehoe, CTTI, Senior Project Manager


Optimal Time for Modeling & Simulation

Why focus on Disease Progression Modeling (DPM)?

- M&S and MIDD are broad topics
- Scoped to DPM because it:
 - has applications across various stages of medical product development
 - integrates information from a wide variety of sources enabling efficient utilization of prior data
 - informs evidence generation in areas of unmet need


DPM: A model that quantitatively describes the time course or trajectory of a disease

Disease Progression Modeling Project

Purpose: Clarify how DPM can advance decision making* throughout the medical product development lifecycle and accelerate the process of bringing treatments to patients

Objectives:

- Describe DPM and its current applications/contexts of use (COUs)
- Identify and catalog examples of DPM that point to areas where it could be valuable in advancing decision making
- Develop and disseminate recommendations that address DPM best practices
- Anticipated Impact: Improve trial and clinical development efficiency through the increased recognition, value, and consistent use of DPM

*decision making includes trial design, regulatory, development, and business decision making

Evidence guides the journey to solutions

- Select quantitative & qualitative research methods that best align with each project's objectives, to:
 - Identify and describe "what is going on" to gain a better understanding of a particular phenomenon
 - Move beyond individual views to more complete and objective understanding of disincentives and motivators for change
- Equipped with data, we then challenge assumptions, identify roadblocks, build tools, and develop recommendations to change the way people think about and conduct clinical trials.

CTTI DPM Project Objectives & Approach

Scoping Review

1) Describe DPM and its current applications/ contexts of use (COUs) Expert Meeting & Case Examples

2) Identify and catalog examples of DPM that point to areas where it could be valuable in advancing decision making Ongoing Team Meetings

3) Develop and disseminate recommendations that address DPM best practices

Multi-Stakeholder Project Team

Team Leads

Malidi Ahamadi (Amgen) Bruce Burnett (Duke) Phil Green (individual patient) Raj Madabushi (FDA)

Executive Committee Champion

Theodore Lystig (BridgeBio)

Social Science Team

Summer Starling (CTTI/Duke) Brian Perry (Duke)*

Writer

Sav Miller (Duke)

Team Members

Jenny Chien (Eli Lilly and Company) Zifang Guo (Merck) Matus Hajduk (Mind Medicine)* Tony Jiang (Amgen) Scott Kollins (Holmusk)* Jiang Liu (FDA) Qi Liu (FDA) Eftyhmios Manolis (EMA) Mark Palmer (Medtronic) Herb Pang (Genentech)
Etienne Pigeolet (Novartis)
John Roberts (CSL Behring)*
Camelia Thompson (Biotechnology Innovation Organization)
Karthik Venkatakrishnan (EMD Serono)
Tiffany Westrick-Robertson (AiArthritis)
Reem Yunis (Medable)
Theo Zanos (Northwell Health)

Communications Lead

Rae Holliday (CTTI)

Project Manager

Lindsay Kehoe (CTTI)

Event Planner

Susan Morris (CTTI)

Expectations for Today

- Provide examples of DPM applications that have been or could be valuable in advancing decision making in clinical trials
- Highlight challenges and potential solutions to using DPM for decision making
- Discuss recommendations/best practices needed from CTTI to advance DPM use and acceptance
- Brainstorm measures of progress

THANK YOU

March 6, 2023

Project Scoping Review Approach and Results

Summer Starling, CTTI Project Manager

Today's presentation

- Overview of objectives & methods for scoping review
- Presentation of scoping review results
- Description and discussion of DPM current applications or contexts of use observed in our scoping review

Scoping review objectives and approach

RQ: What is the scope of how disease progression modeling (DPM) is being used (applications) to inform clinical trial design, support regulatory decision making, and support U.S. global trials of drugs, biologics, and devices?

Objectives:

- Assess literature landscape
- Describe different DPM potential applications
- Identify unique or illustrative case examples of DPM for trials

Approach:

- Scoping review
- Collaboration: Social Science Team, Duke SOM Library Sciences, CTTI DPM Project Team
- Iterative data decisions

Criteria for inclusion

Inclusion criteria:

- Applications of disease progression modeling in humans in any therapeutic area at any clinical phase of the drug development process
- Original research, case studies, consortia papers, and white papers included
- Published in English since 2012

Exclusion criteria:

- Does not relate to clinical trials
- Does not address a disease
- Does not reflect a disease progression component
- Related to medical diagnosis or prediction of diagnostic outcomes
- Not related to humans
- Methodology paper only

Methods: Disease Progression Modeling Scoping Review

Targeted searches and evidence gathering

- Search string keywords, phrases iteratively developed with Project Team
- Search executed in 3 databases
 - PubMed, Embase, and Scopus

- Data screened using Covidence
- Data organized using MaxQDA

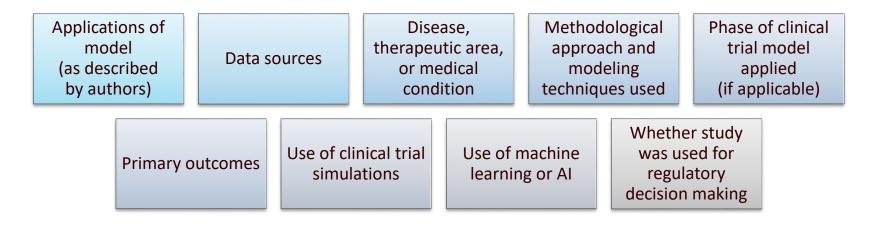
PRISMA process for data selection

3,558 references identified

2,979 studies title and abstract screened

450 studies assessed for full-text eligibility

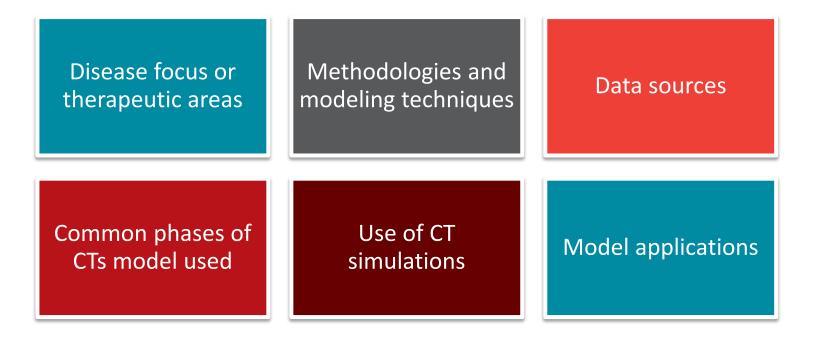
353 studies excluded during full text review


97 studies included

Methods: Disease Progression Modeling Scoping Review

Data extraction

- With our final sample (n=97), we:
 - Extracted 9 data points from each study and coded in MaxQDA



Methods: Disease Progression Modeling Scoping Review

Data refinement and synthesis

- With our final sample (n=97), we:
 - Reviewed codes for accuracy
 - Refined code definitions and thematic groupings
 - Cross tabulated and explored data intersections, relationships
 - Flagged illustrative or unique studies of interest

Results: Overview

Results: Disease Progression Modeling Scoping Review

Results: Diseases or therapeutic areas

- 34 unique disease or medical conditions in final sample set
 - Including neurodegenerative diseases, cancers, neuromuscular disorders, mental health disorders, and COVID-19
 - 56% neurodegenerative diseases or cognitive impairments (n=54)

Most frequent diseases or medical conditions (n=97)	n(%)
Alzheimer's disease	26(27)
Parkinson's disease	12(12)
Huntington's disease	6(6)
Amyotrophic lateral sclerosis (ALS)	6(6)
Osteoporosis	5(5)

Results/Therapeutic Areas: Disease Progression Modeling Scoping Review

Results: Model methodologies and techniques

Model methodologies (n=97)	n(%)
Empirical or statistical	87(90)
Mechanistic (QSP, etc.)	10(10)

Diverse array, 100+ unique DP modeling techniques employed

- Regression analysis and nonlinear mixed effects modeling most common statistical modeling techniques
- Machine learning used in >10% of final sample set (n=12)
- Time-to-event modeling techniques also used (n=11)

Results/Model methodologies: Disease Progression Modeling Scoping Review

Results: Data sources

Data sources used for model application (n=97)	n(%)
Real world data (RWD)	63(65)
Randomized clinical trials data (RCT)	44(51)
Literature	8(8)
Preclinical data	4(4)

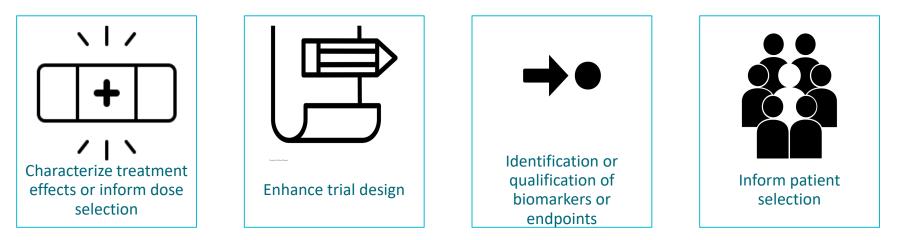
16 studies used multiple data source types (16%)

Results/Data sources: Disease Progression Modeling Scoping Review

Results: Additional observations

Majority had no applicable CT phase for model application (n=69, 71%)

• 17 applied to Phase III trials; 8 to Phase II; 2 to preclinical


More than a third (n=38, 39%) conducted CT simulations as part of model exploration or application

Thematic groupings for applications

13 applications for trials identified across scoping review results

Observed applications for trials, All studies (n=97)

Thematic grouping (4)	Applications (13)
Characterize treatment effects	Inform dose/regimen selection & optimization
or inform dose selection	Treatment effect characterization
	Inform study duration
	Inform study power
Enhance trial design	Predict dropout rates
	Quantify impact of dropout
	Use for virtual control arm
Identification or qualification	Endpoint identification
of biomarkers or endpoints	Identification of prognostic or predictive biomarkers
	Improve characterization of patients
Inform patient selection or	Inform trial enrichment strategies
population sources of variability	Quantify impact of co-variates / inform stratification factors
	Support cross-population extrapolation or pooling

Frequencies of applications for trials, All studies (n=97)

	Application	Studies (n)
Characterize treatment effects	Inform dose/regimen selection & optimization	11
or inform dose selection	Treatment effect characterization	32
	Inform study duration	6
	Inform study power	28
Enhance trial design	Predict dropout rates	9
	Quantify impact of dropout	2
	Use for virtual control arm	2
Identification or qualification	Endpoint identification	3
of biomarkers or endpoints	Identification of prognostic or predictive biomarkers	31
	Improve characterization of patients	25
Inform patient selection or population sources of variability	Inform trial enrichment strategies	23
	Quantify impact of co-variates, inform stratification factors	23
	Support cross-population extrapolation or pooling	3

Frequencies of applications for trials, All studies (n=97)

	Application	Studies (n)
Characterize treatment effects	Inform dose/regimen selection & optimization	11
or inform dose selection	Treatment effect characterization	32
	Inform study duration	6
	Inform study power	28
Enhance trial design	Predict dropout rates	9
	Quantify impact of dropout	2
	Use for virtual control arm	2
Identification or qualification	Endpoint identification	3
of biomarkers or endpoints	Identification of prognostic or predictive biomarkers	31
	Improve characterization of patients	25
Inform patient selection or	Inform trial enrichment strategies	23
population sources of variability	Quantify impact of co-variates, inform stratification factors	23
	Support cross-population extrapolation or pooling	3

Frequencies of applications for trials, Empirical or statistical models (n=87)

Application		Empirical or statistical models (n)
Characterize treatment effects	Inform dose/regimen selection & optimization	8
or inform dose selection	Treatment effect characterization	25
	Inform study duration	6
	Inform study power	28
Enhance trial design	Predict dropout rates	9
	Quantify impact of dropout	2
	Use for virtual control arm	1
Identification or qualification	Endpoint identification	2
of biomarkers or endpoints	Identification of prognostic or predictive biomarkers	30
	Improve characterization of patients	23
Inform patient selection or population sources of variability	Inform trial enrichment strategies	21
	Quantify impact of co-variates, inform stratification factors	22
	Support cross-population extrapolation or pooling	1

Frequencies of applications for trials, Empirical or statistical models (n=87)

	Application	Empirical or statistical models (n)
Characterize treatment effects	Inform dose/regimen selection & optimization	8
or inform dose selection	Treatment effect characterization	25
	Inform study duration	6
	Inform study power	28
Enhance trial design	Predict dropout rates	9
	Quantify impact of dropout	2
	Use for virtual control arm	1
Identification or qualification	Endpoint identification	2
of biomarkers or endpoints	Identification of prognostic or predictive biomarkers	30
	Improve characterization of patients	23
Inform patient selection or population sources of variability	Inform trial enrichment strategies	21
	Quantify impact of co-variates, inform stratification factors	22
	Support cross-population extrapolation or pooling	1

Frequencies of applications for trials, Mechanistic models (n=10)

	Application	Mechanistic models (n)
Characterize treatment effects or inform dose selection	Inform dose/regimen selection & optimization	3
	Treatment effect characterization	7
	Inform study duration	-
	Inform study power	-
Enhance trial design	Predict dropout rates	-
	Quantify impact of dropout	-
	Use for virtual control arm	1
Identification or qualification	Endpoint identification	1
of biomarkers or endpoints	Identification of prognostic or predictive biomarkers	1
Inform patient selection or population sources of variability	Improve characterization of patients	2
	Inform trial enrichment strategies	2
	Quantify impact of co-variates / inform stratification factors	1
	Support cross-population extrapolation or pooling	2

Special thanks

Brian Perry Research Practice Manager, Duke SOM

Kelly Franzetti CTTI Project Manager

Lesley Skalla Research and Education Librarian, Duke Medical Center Library & Archives

Megan von Isenburg

Associate Dean for Library Services & Archives, Duke Medical Center Library & Archives

DPM Project Team Leads and Members

Special thanks: Disease Progression Modeling Scoping Review

Summer Starling, CTTI Project Manager summer.starling@duke.edu

THANK YOU

www.ctti-clinicaltrials.org