Welcome to CTTI’s Trials in Health Care Settings Expert Meeting

- This meeting is being recorded.
- All participants are muted upon entry.
- Kindly unmute for speaking purposes only (i.e. during Open Discussion)
- Questions will be taken throughout the meeting via the chat box.
- Videos can remain off until the Breakout Group Sessions.
- Please contribute and make this Working Group Meeting a productive one!
<table>
<thead>
<tr>
<th>Time (EST)</th>
<th>Content</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 AM</td>
<td>Welcome Remarks and Introduction to CTTI</td>
<td>Sally Okun (CTTI)</td>
</tr>
<tr>
<td>10:35 AM</td>
<td>Trials in Health Care Settings Project Overview</td>
<td>Lindsay Kehoe (CTTI)</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Review of Project’s In-depth Interview Results (Q&A to follow)</td>
<td>Amy Corneli (CTTI)</td>
</tr>
<tr>
<td>11:15 AM</td>
<td>Review of Project’s Draft Recommendations (Open discussion to follow)</td>
<td>Mark Stewart (Friends of Cancer Research)</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Case Examples</td>
<td>Martin Landray (University of Oxford)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laura Esserman (University of California San Francisco)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ryan Ferguson (Department of Veteran’s Affairs)</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>Breakout Groups</td>
<td>All Attendees</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Implementation Opportunities (Open discussion to follow)</td>
<td>Kraig Kinchen (Eli Lilly and Company)</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>Closing Comments and Adjourn</td>
<td>Lindsay Kehoe (CTTI)</td>
</tr>
</tbody>
</table>
Introduction to CTTI

Sally Okun, CTTI Executive Director
Clinical Trials Transformation Initiative

Multi-stakeholder public-private partnership co-founded in 2007 by FDA and Duke University
- Active collaboration with ±500 individuals and groups
- Steering Committee with ±80 member organizations
- All stakeholders have an equal voice

Evidence-based research methods
- Multi-method research
- Systematic literature reviews
- Expert meetings

Impactful products and resources
- Case Study Exchange
- Policy adoption
- Enterprise-wide engagement

MISSION
To develop and drive adoption of practices that will increase the quality and efficiency of clinical trials.

VISION
A high-quality clinical trial system that is patient-centered and efficient, enabling reliable and timely access to evidence-based therapeutic prevention and treatment options.
We use quantitative & qualitative research methods, selecting those best aligned with each project’s objectives, to:

- Identify/describe “what is going on” to gain a better understanding of a particular phenomenon
- Move beyond individual views to a more complete and objective understanding of the disincentives and motivators for change

Equipped with data, we then challenge assumptions, identify roadblocks, build tools and develop recommendations to change the way people think about and conduct clinical trials.
All stakeholders have an equal voice

Everyone must have an equal seat at the table

- Gov't & Regulators
- Investigator s & Sites
- Patients, Caregivers & Patient Advocacy Groups
- Industry
- Academia
- IRBs
- Trade & Prof. Orgs

Includes pharma, bio, device, CRO, health data/tech

Everyone must have an equal seat at the table

All stakeholders have an equal voice
TRANSFORMING TRIALS 2030

By 2030, clinical trials need to be:

- Patient-Centered & Easily Accessible
- Fully Integrated Into Health Processes
- Designed With A Quality Approach
- Maximally Leveraging All Available Data
- Improving Population Health

A critical part of the Evidence Generating System

https://ctti-clinicaltrials.org/who_we_are/strategic-vision/
Embedding Trials into Health Care Settings

Project Overview

Lindsay Kehoe, CTTI Project Manager
The Issue

- Traditional randomized control trials (RCTs):
 - Typically don’t collect data through integration w/ clinical care
 - May have strict eligibility that limits the generalizability of trial results
 - May be inefficient, and expensive when they duplicate activities that already occur in clinical care
- Embedding trial components into clinical care can overcome these limitations
- Clarity around how to operationalize this integration is needed.
Embedded clinical trials have:

- Elements integrated into health care delivery
- Accessibility to patients at the point of routine care
- Close alignment with clinical workflows
- Elements built into existing infrastructure to use clinical care data, such as electronic health record (EHR), for research purposes

Ultimately, what is the trial purpose? What is the question to be answered?
Paving the Way for Embedded Trials

- National Academy of Medicine, FDA RWE Framework, NIH Collaboratory, PCORI, Veteran’s Affairs, AHRQ...
- Existing CTTI work

Quality by Design
- Recs that help focus resources on the errors that matter

Registry Trials
- Recs for assessing & designing registries to meet FDA review expectations

Sentinel
- 1st randomized trial using FDA-Catalyst System, IMPACT-Afib

RWD
- Recs for using RWD to evaluate trial eligibility criteria & enhance recruitment
Embedding Trials into Health Care Settings

Project Overview

Purpose: Facilitate the fit-for-purpose integration of clinical trials intended for, but not limited to, medical product review into clinical care

Objectives:

- Identify the barriers and potential solutions to incorporating interventional trials into clinical care settings
- Identify when elements of interventional clinical trial integration into clinical settings would be feasible and the associated benefits and risks
- Describe the operational approaches to incorporating interventional trials into clinical care settings
Project Deliverables

CTTI Recommendations

- Multi-Stakeholder Expert Meeting
- Team Discussion & Consensus
- Interview Results
- Case Examples
Today’s Meeting Objectives

Present project findings: in-depth interviews with study designers and implementers

Refine draft operational recommendations

Begin to strategize implementation of recommendations
Summary of interview findings

Amy Corneli, PhD, MPH
Lead Social Scientist, CTTI
Associate Professor, Duke University
Study design and method: Qualitative descriptive study with in-depth interviews; iterative process

Participants:
- **9 sponsors/leaders**: Registrational trials (n=4) and non-registrational trials (n=5)
- **7 implementers**: Registrational trials (n=3) and non-registrational trials (n=4)

Analysis:
- Rapid analysis reports and team presentations (n=2)
- Formal thematic analysis report and team presentation
Timeline

Conducted interviews — Sponsors/Leaders
Presented interim findings
Conducted interviews — Implementers
Presented interim findings
Presented formal analysis findings
Presented summary of findings

April 23 to September 1, 2021
September 17, 2021
October 7 to November 22, 2022
January 7, 2022
April 1, 2022
May 11, 2022
Today’s focus

Motivations for conducting embedded interventional trials

Barriers to conducting embedded trials

Overcoming barriers to conducting embedded trials
Motivations for conducting embedded interventional trials
Motivations for conducting embedded trials

- Reasons for embedding trials
- Persuasive arguments toward health care settings to join embedded trials
- Perceived benefits of embedding trials
Motivations—Reasons for embedding

Sponsors described **three** primary reasons for using an embedded approach.
Reason #1

Want to use a learning health systems approach

- Narrows the gap between clinical research and care
- Improves knowledge generation and its translation to clinical care

We want to become the IOM’s version of a learning health care system – where we’re leveraging the informatics infrastructure, as well as the clinical experience and the research expertise, to really learn how to care for our patients.

– Sponsor, non-registrational trial
Reason #2

Enables the conduct of pragmatic or naturalistic studies

> Allows for the rigorous evaluation of treatment approaches in real-world clinical practice settings

And the idea is that it’s a naturalistic study in the sense that what we’re observing is not only the treatment philosophy but also how the treatment philosophy is used in clinical practice. So, we didn’t want to constrain that by anything artificial… we really wanted to evaluate a treatment approach as used in clinical practice, but with the rigor of a randomized clinical trial.

– Sponsor, non-registrational trial
Reason #3

Cost-effective

- High costs of conducting conventional clinical trials deterrent to research
- Perceived cost savings from utilizing existing health networks, informatics infrastructure, and EHR data

...the main consideration was costs here...was that, if we were able to do this, integrate with healthcare systems, then we can take advantage of already curated data for any of these hundreds of thousands of patients.

– Sponsor, non-registrational trial
Motivations—Persuasive arguments

Arguments focused on the prospective benefits of embedding trials

1. Benefits to patients
2. Benefits to health care settings
Persuasive argument: Benefits to patients

Results from embedded trials identify the best treatments and lead to better health outcomes for patients.

Results are more generalizable to everyday clinical practice.

Patients’ own clinicians are engaged in evidence-based practice.

Trials are sufficiently powered to detect small differences that matter to patients.
I think the biggest benefit is that you study the actual type of patients who are going to be receiving the intervention in the future, so that the results should be very generalizable to clinical practice. You use the measures of success that are used to measure success in everyday clinical practice, and so you're not extrapolating …[and saying] “Well, gee, 30% of patients met the trial endpoint, but that's not really an endpoint that we use every day, and so maybe it will be 40% of patients who would benefit using a different measure that fits with the clinical measure.” So, I think that's a major benefit.
– Sponsor, non-registrational trial
Persuasive argument: Benefits to health care settings

- Increase visibility

Increases efficiency across clinical care and research; cost savings

Become known as a health care system where cutting edge clinical research is conducted

- May increase patients seeking care at setting
- May increase retention in care at setting because of access to latest medical knowledge
I think there's a belief, in some places, that clinical trials are optional, and I think that we need a different perspective… access to clinical trials is providing the best clinical care. As opposed to just being optional. …I think people are recognizing that they get to choose where they get their care, and if you're at a place where you can get access to newer therapies beyond top clinical care based on existing data, that's a positive thing. And so, I think that health care systems will increasingly recognize that's a real value to their membership if they can offer them – effectively offer them, of course.

– Implementer, registrational trial
Motivations—Benefits of embedding

Two main categories:

- Operational benefits
- Benefits to patients
Operational benefits

- Enabled larger trials
- More efficient trial conduct

I think being able to hopefully enroll larger numbers of participants because maybe the cost per participant is a little bit lower or the efficiency of recruitment is a little bit greater.

– Sponsor, non-registrational trial
Benefits to patients

- Have access to evidence-based care
- Have access to clinical trial participation
 - Can reach populations who are historically not included in research
Barriers to conducting embedded trials
Barriers

Three groups of barriers

1—Site staff time and availability

- Clinicians have limited time, limited incentives to participate
- Challenging to familiarize clinicians with study protocol due to limited time
- Training and start-up particularly time consuming for sites new to research
- Screening and recruitment activities are new for site staff
...identification and screening of patients is very difficult for them; getting them through the first stage because it’s not part of their routine day-to-day efforts. And I think that’s really been the biggest barrier is getting them to identify and start a screen on a subject.

The other big thing is we’ve had to work with them on kind of what’s their elevator pitch for the study; so that when the patient comes in and they might be a participant, be excited to study, excited to participate, you can give them a two-minute elevator speech and get them excited enough to take the screen. And that is not part of what they do. They don’t really understand that. We’ve had to work really hard to get them to get to that point.

– Sponsor, non-registrational trial
Barriers

2—Lack of leadership buy-in
 - Difficult to implement without support and engaged site personnel
 - Cannot do without top-level leadership, particularly IT

3—Data systems
 - Obtaining approval to export and use EHR outside of the health care system
 - Interoperability of systems
Most IT leaders in hospitals are “pull up the moat, throw the crocodiles in, fill it with boiling water, and never come near IT” people.

But in order for data to be transferred, you have to be able to bridge that gap. And that’s not how hospital IT people work. They work by thinking if there’s a data breach, it’s the end of the world. So, the way they achieve that is just by putting up the most colossal barriers to collaboration of anything I’ve ever seen in medicine…And so, we have to partner with the medical leadership to open the eyes and minds of the IT individuals. And once they see it, they’re like “Oh, there’s a huge improvement, we should definitely do this sometime.” But they had to hear it first before you knew the chance was for the better, and not just super scary and a risk, something bad.

—Sponsor, registrational trial
Overcoming barriers to conducting embedded trials
Overcoming barriers

Five suggestions

1—Culture change/paradigm shift

- Change perspectives—view research as part of regular clinical care, with clinicians serving as researchers
- FDA being more open to embedded trials
- NIH, FDA, others to learn from adjustments due to COVID-19

It really takes culture change. Embedding these trials, even though it’s not a lot, takes a little bit of extra effort from everyone who’s in that process of delivering care, without any recognition, without any reward. And, until the culture is changed so that it’s expected that research is embedded in clinical care and good clinical care is defined by learning from every patient in a learning health system fashion, it’s going to be really hard to do these as a one-off.

– Sponsor, non-registrational trial
Overcoming barriers

2—Healthcare buy-in and engagement

- Because participation often involves changing health care staff’s usual procedures
 - e.g., Screen participants, describe randomization
- Need both provider and patient engagement
 - Interested providers more likely to participate, encourage others
 - Patients more likely to enroll, stay in trial, contribute to study design
There’s so much education required… educating people to get the buy-in that you need. Buy-in is so important. Buy-in of the patients, buy-in of the providers, buy-in of leadership, buy-in of the pharmacy. Everybody’s got to be on board in order for this to run seamlessly because they’re all part of the usual care process. If they don’t understand, or they don’t agree, then it’s going to break.

–Implementer, non-registrational trial
Overcoming barriers

3—Reduce burden and minimize negative impact

- Health care settings more likely to participate when burden is minimal
 - Regulatory reforms could reduce administrative burden on settings
 - Demonstrate that trial does not impede clinical work flow/requires minimal effort
 - Provide research support to reduce extra workload/tasks
 - Reduce redundant data entry
Overcoming barriers

4—Invest in research infrastructure

- Research staff manage regulatory issues
- Rely on research coordinators to play significant roles, e.g.:
 - Enroll and consent patients
 - Track and schedule data collection
 - Assist with data extraction and enter data
- Include research clinicians, e.g.:
 - Oversee study personnel
 - Ensure proper study conduct
 - Conduct assessments outside of regular care
What we were asking the clinical people to do is do what you normally do. And so, we purposefully tried to change their flow and how they take care of patients as little as possible. And, what we tried to do is ask them to document things the way they normally would. And then, it would be our job to have a research person that would extract the data in a way that made it comparable and made its fidelity high…I think we’ve got something like 10 coordinators or something. So, we pulled our most senior coordinator at the time to be the one who ran the study…

– Sponsor, non-registrational trial
Overcoming barriers

5—Manage interoperability of EHR systems

- Most created templates to extract data from EHRs—or extracted data manually
- Partnered with PCORNet, use common data model
- Changes are necessary to EHR systems to facilitate interoperability

I think that this is an area that, whether it's clinical research or quality improvement or federal oversight of outcomes across health systems, there's definitely a recognition of the need to be able to leverage EHR data in a more consistent way; make these types of approaches more widespread.

– Sponsor, registrational trial
Questions & Comments?
THANK YOU

www.ctti-clinicaltrials.org
Operational Approaches to Embed Trials
CTTI Project Draft Recommendations

Mark Stewart, Friends of Cancer Research
The Case for Embedding Clinical Trials in Health Care

<table>
<thead>
<tr>
<th>Patients</th>
<th>Providers</th>
<th>Sponsors & Investigators</th>
<th>Regulators</th>
<th>Payers</th>
<th>Health System Leaders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less burden to participate in research</td>
<td>Opportunity to engage in research with less burden than traditional RCTs</td>
<td>Generalizable population</td>
<td>Sufficiently sized trials with diverse populations</td>
<td>More, diverse data for reimbursement decisions</td>
<td>Opportunity to innovate and support quality care</td>
</tr>
<tr>
<td>Better, evidence-based care</td>
<td>Opportunity to engage in research with less burden than traditional RCTs</td>
<td>Insights into real-world implementation of health interventions</td>
<td>Leverages power of randomization & RWD in the context of regulatory decision-making</td>
<td>A better understanding of the effectiveness and safety of health interventions</td>
<td>Chance to engage new patients through additional research</td>
</tr>
<tr>
<td>Greater access to a variety of treatment options</td>
<td>Addresses important questions to improve care in a broad population</td>
<td>Potential for increased efficiency & cost savings by reducing duplication of trial & care activities</td>
<td>Generalizable evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sufficiently sized trials with diverse populations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential for increased efficiency & cost savings by reducing duplication of trial & care activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generalizable evidence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CTTI Draft Recommendations

For an Individual Trial

1. Recognize that embedding elements of a trial is not all or nothing

2. Assess whether clinical trial elements should be embedded based on the research question, target population, health care setting(s), and required data

3. Verify that available data sources used for embedded trials are fit for purpose –relevant, reliable, and of sufficient quality

4. Streamline trial design and conduct to minimize participation burden for patients, providers, and research staff

5. Ensure the appropriate level of resources are available for monitoring and safety reporting

For the Clinical Trial Enterprise

6. Recognize, reward, value and incentivize research activities

7. Promote the basis for and ways to embed trial elements into health care delivery
Recommendation #1
Recognize that embedding elements of a trial is not all or nothing

- Consider what aspects, if embedded, would improve the trial and answer the study question.
- Embedding trial elements into care is possible. CTTI has five Case Examples that reflect this at an individual study level.
Recommendation #2
Assess whether embedded clinical trial elements should be considered based on the research question, target population, setting, & required data

Sponsor Considerations
- Do HCPs agree on the proposed, clinically relevant endpoints?
- Can logistics of implementation be integrated into clinical care workflow?
- Do regulatory bodies agree the study design can adequately address the research question?
- Can data be accessed, sorted, & extracted from EHR or other data systems?
- Is there site readiness to embed trial elements?

Health Care System Considerations
- Is the research question relevant to patients and HCPs in clinical settings?
- Can logistics of implementation be integrated into the clinical workflow with adequate reimbursement for clinician time?
- Are the processes used for embedding trial elements conducive for future trials (i.e. not continually redeveloped)?
Recommendation #3
Ensure available data sources used for embedded trials are fit-for-purpose – relevant, reliable, and of sufficient quality

<table>
<thead>
<tr>
<th>Relevant</th>
<th>Reliable</th>
<th>Sufficient Quality</th>
</tr>
</thead>
</table>
| • Use data collected during routine care as the primary, foundational source data.
• Collect the least amount of data necessary to answer the research question. | • Appreciate the intention and potential consequences of clinical care data collection and use.
• Validate the reliability of the clinical data through manual and automated data checks. | • Perform a feasibility assessment for data missingness and to determine the need and availability of supplemental data.
• Ensure that clinical data incorporated into a trial database are complete, plausible, accurate, and traceable.
• Develop strong data privacy and security plans. |

Consult early and often with regulatory authorities on data quality questions
Recommendation #4
Streamline trial design and conduct to minimize participation burden for patients, providers, and research staff

- **Approach:** Determine which trial activities and data are essential and whether they align with clinical workflows (consider CTTI’s Quality by Design recommendations)

- **Training:** Insert research education and training with minimal disruption to staff roles and responsibilities

- **Documentation:** Streamline documentation by using common documents (e.g., master service agreements, master protocols); Limit the amount of data queries

- **Compliance:** Use central IRBs or develop agreements with local reviewers to rapidly review new submissions

- **Data:** Work with IT leaders to automate trial prompts and flags into EHRs, and to develop strong data privacy and security plans; Minimize duplicate data entry and supplemental data collection
Recommendation #5

Ensure the appropriate level of resources for monitoring and safety reporting

- Align clinical trial oversight with the objectives and inherent risks of embedding trial elements
- Streamline trial processes into clinical care delivery and ensure GCP requirements for clinical staff and health care providers participating in embedded trials are not compromised
- Appreciate what role each clinical staff member can play in research activities and pro-actively train and support them
- Engage with regulatory authorities early with the goal to focus upon the most relevant and impactful potential safety hazards (risk-based monitoring approach)
- Leverage technology where appropriate
Recommendation #6
Recognize, reward, value and incentivize research activities

- Appreciate the patient and health care provider journey to introduce research at various touchpoints.

- Motivate, compensate, and support health care staff (including health IT) to prioritize research participation.
Recommendation #7
Promote the basis for & ways to embed trial elements into health care delivery

Health care system leadership can:
- Collaborate with operational tech providers to build a digital infrastructure.
- Work with trial sponsors to develop communication plans so results are fed back to leadership.
- Encourage standardization for how clinical care data are captured, documented, and validated by clinical care staff.

Government and policy led forums can:
- Promote the rationale for embedded trials as a means to improve evidence generation.
- Encourage regulatory and policy changes.
- Support sponsors, investigators, and operational technology providers to share learnings.

Leadership partnerships are needed across health care systems and the clinical trial enterprise (CTE) to embed trials.
THANK YOU

www.ctti-clinicaltrials.org
Open Group Discussion

Are these recommendations clear?
Where is there too much or not enough information?
Is there a place where a tool would provide needed detail?
RECOVERY Trial: Using an Embedded Trial to Identify Treatments for COVID-19

Martin Landray, University of Oxford
Randomised controlled trials don’t have to be complicated... they must be practical

- **Simple eligibility:** Hospitalised patients with SARs-CoV-2
- **Important outcome:** mortality (use of ventilation, duration of hospitalisation)
- **Randomization:** assigns patient between suitable and available treatments
- **Follow-up:** 1 page case report form + extensive linkage to routine NHS datasets
Patients recruited at point-of-care – admission to hospital for COVID-19
Randomization to intervention + usual care vs. usual care alone
Data collection
 ▪ objective clinical endpoints
 ▪ targeted adverse events of specific interest to intervention
Data sources
 ▪ electronic case report form (eCRF) at randomization and 28 days (or death)
 ▪ linkage to 25 national routine healthcare datasets (including death registry, hospital ‘claims-like’ data, disease registries)
All trial materials (protocol, recruitment numbers, training materials, results, etc) made publicly available in real-time [www.recoverytrial.net]
COVID can affect anyone... RECOVERY is open to everyone
Comprehensive follow-up through NHS data

Hospitalisation datasets
- Scottish Morbidity Records (SMR)
- Hospital Episode Statistics Admitted Patient Care (HESAPC)
- Secondary Uses Service Admitted Patient Care (SUSAPC)
- Patient Episode database for Wales (PEDW)

Mortality datasets
- Personal Demographics Service
- Civil Registrations
- NHS Scotland Central Register PDS
- Welsh Demographics Extract

Disease specific datasets
- UK Renal Registry
- Cancer Registry

Critical care datasets
- Scottish Intensive Care Society Audit Group (SICSAG)
- Intensive Care National Audit and Research Centre (ICNARC)
- HES Critical Care Dataset (CCDS)
- PEDW Critical Care Dataset (CCDS)

Primary care datasets
- Business Services Authority (BSA) prescribing and dispensing data
- General Practice Extraction Service (GPES) Data for pandemic planning and research (GDPPR)

COVID datasets
- COVID-19 Hospitalisation in England Surveillance System
- Second Generation Surveillance System (SGSS)
- Electronic Communication of Surveillance in Scotland (ECOSS)
- Welsh Results Reporting Service (WRRS)
4 effective treatments for high-risk patients

- Dexamethasone
- Tocilizumab
- Ronapreve (casirivimab+ imdevimab)
- Baricitinib
Dear colleagues,

Dexamethasone in COVID-19

The RECOVERY trial in COVID-19 has provided initial results of the dexamethasone arm at https://www.recoverytrial.co.uk/recovery_dexamethasone_statement_10020_final.pdf.

Dexamethasone 6 mg once per day (either by mouth or by intravenous injection) for ten days was compared with 4311 UK patients randomized to usual care alone. Dexamethasone reduced deaths in one-third in ventilated patients (rate ratio 0.65 [95% confidence interval 0.49 to 0.85], p=0.003) and by one-fifth in other patients receiving oxygen only (0.80 [0.67 to 0.96], p=0.002).

There was no benefit among those patients who did not require respiratory support (1.22 [0.84 to 1.78], p=0.4).

Normally we would advise waiting for the full paper before changing practice, to ensure final analysis and peer review do not lead to different conclusions. However, given the clear mortality advantage, with good significance, and with a well-known medicine which is safe under these circumstances we consider it is reasonable for practice to change in advance of the final paper.

Please find more information below.

Best wishes.

Dr Frank Atherton
Chief Medical Officer for Wales

Dr Gregor Smith
Chief Medical Officer for Scotland

Dr Michael McBride
Chief Medical Officer for Northern Ireland

Professor Stephen Powis
National Medical Director
UK Health and Care Improvement

Professor Chris Whitty
Chief Medical Officer for England

The health ministry has approved the use of the drug dexamethasone for the treatment of severe COVID-19 patients. (JAPAN TIMES via AP)

The COVID-19 Treatment Guidelines Panel recommends using dexamethasone at a dose of 6 mg per day for up to 10 days in patients with COVID-19 who require supplemental oxygen or who are mechanically ventilated. Use in patients with COVID-19 who require supplemental oxygen and who are not mechanically ventilated is not recommended.

EMA endorses use of dexamethasone in COVID-19 patients on oxygen or mechanical ventilation.

News 16/06/2020
Widely recommended, loudly promoted, extensively used...

Hydroxychloroquine, lopinavir, azithromycin, convalescent plasma, aspirin, colchicine...
<table>
<thead>
<tr>
<th>CHALLENGES</th>
<th>SOLUTIONS</th>
</tr>
</thead>
</table>
| Technology Infrastructure:
• Time and effort is required to embed randomization into multiple hospital EHR systems | Technology Infrastructure:
• Integrates randomization into care pathway via simple means
• Leverages standalone system because it’s flexible and easier to control |
| Data:
• Most data sets are shallow (but they are comprehensive in that they cover everyone, regardless of location) | Data:
• Pulls from multiple national data sources for holistic picture of outcomes that matter (provides almost complete follow-up for many years, even if patients move)
• Algorithmic approach to aggregate and interpret information from multiple data sources |
| Culture:
• False certainty/conflicting public information prior to trial completion
• General lack of understanding that it takes large numbers to get clear answers (whether they’re positive or negative)
• Trials often perceived as ‘risky’ (but clinical care based on no evidence is risky) | Culture:
• Ensures clinicians feel that both the research question is important and participation in the trial would not unduly complicate patient care
• Restricts data collection to essential items only and supplements if needed
• Transparency of design, processes, progress, and results from the outset |
| Process:
• Lengthy approval and site initiation processes delay discovery of true effects of treatments, harming patients and public health | Process:
• Utilizes central IRB
• All hospitals sign one template contract (non-negotiable)
• NHS leadership promote the concept that “randomized trial is part of clinical care, not an optional extra”
• Base approaches on key principles of RCTs (e.g. www.goodtrials.org) and focus on issues that have a material influence on the trial participants and the reliability of the results |
“Coming in to work each day, people would say to me ‘they’ve chosen the wrong drugs’. I’d say ‘let’s see’.

I didn’t know this [dexamethasone] would work. No one knew which drugs would work. But I thought we should help find out.

Three months on from the start of the trial, we have a therapy which is cheap & readily available. Millions could benefit.

I’m glad we helped contribute 1% of the data. Thank you to the patients who when offered to participate, agreed.”

“The RECOVERY trial] has inspired many of the more junior Doctors in our trust to look again at a career in research and we feel has given an opportunity / access to treatment to our patients that they otherwise would not have"

“We have been very pleased to have been able to help contribute to this effort that has helped to provide some clear answers.”
Patients are the why and the how

“When he left in the ambulance I really didn't think I would ever see him again.”

Feedback from RECOVERY participants

“Being given the opportunity to participate in the RECOVERY trial was very humbling, knowing that the information they were collecting had a direct impact on the treatment of patients, and signing on was something I did gladly.”

Kimberley

“I was already so ill that I was willing to give anything a go if it might help me to recover more quickly. But I also knew that it would help the researchers studying the coronavirus to work out which treatments actually help people... I’m really glad that NHS patients can take part in the RECOVERY trial because otherwise no one would know what treatments work for the people actually suffering from COVID-19..”

Claire

“It is a miracle how things have progressed in such a short time. A year before I caught COVID-19, we had only just heard about this disease but now we have these treatments that can be offered to people like me. If nobody took part in clinical trials such as these, we would still be looking for something that worked against this illness.”

Dennis

“COVID-19 was such a big unknown and I knew that clinical trials were the only way we would find out what treatments actually work or not...I really do think the treatment (tocilizumab) made a big difference. Up until then, it was quite scary as I didn’t know if I was going to make it or not.”

Wendy
WORDS OF WISDOM: Compelling results save lives

Science
- Consolidate around a question that is big enough and important enough
- Work out what matters, focus on what matters, do what matters (don't get distracted or allow others to distract you)
- Randomize, have adequately large numbers, and see trial through to completion

Approach
- Learn from successful trials but don't copy and paste
- Use what you've got from existing data sources, even if it's not perfect
- If a trial is not practical, it won't get done

Timeliness
- Taking longer (e.g. contract approvals, IRB review) doesn't necessarily mean doing a better job – but it certainly means it takes longer (delaying evidence-based care)

Environment
- Communicate and be transparent (protocol, progress, results all open access in real-time)
- Create a culture where we are all in this together
I-SPY COVID TRIAL
Investigation of Serial studies to Predict Your Therapeutic Response with biomarker Integration and Adaptive Learning

CTTI Embedding Clinical Trials in Healthcare Settings
5.11.22
Laura Esserman, UCSF
I SPY COVID Design: Enrollment Jul 30, 2020; >3000 pts to date
Modelled after I SPY 2 Breast Cancer Platform

Screening phase 2 study
Look for agents with big effects (30% ↓ time to recovery, mortality)
Biomarker rich trial with goal of integrating into std in the future

Calfee et al. Nature communications 2021
I-SPY COVID TRIAL: Design adjustment over time

BACKBONE: All patients will get the best standard of care (optimal ventilatory management) + Remdesivir + steroids. Every patient gets some treatment with proven efficacy. Backbone updated as needed.

GOAL: Rapidly screen agents for a BIG IMPACT

There is a 120 hour (+/- 6 hours) window to enroll patients from the first day they require high flow O2 (6L+) or intubation.
Agent Timeline

Bayesian platform design, DMC monitors data every 2 weeks

Files et al BMJ in press, Med Archives
35 sites as of March 15, 2022

Mix of Academic and Community Centers

UCSF
UC Davis
Keck School of Medicine of USC
MemorialCare
UC Irvine
Kaiser LA
hoag
DHR Health
Sanford Health
MERCY HEALTH
Univ of Michigan
WVU
Stamford Health
Yale Medicine
Penn Medicine
Main Line Health
Columbia University
GEORGETOWN UNIVERSITY
Wake Forest Baptist Health
WVU
Emory University
UF College of Medicine
U of Florida
Northwestern Medicine
Spectrum Health
University of Iowa Health Care
Enrollment as of 17-Feb-2022

Randomized Count: 1,112
Observational Count: 1,928
Total Count: 3,040

Bar chart - Investigational, Control, and Observational

- Control
- Investigational
- Observational
Enrollment Patterns Over Time: Willingness to Randomize Changed

As of this am, 2 more days to go in the week

Study Event Start: February 13 - 19, 2022
Observational: 10
Randomized: 5

Counts

per week

2020/10 2021/1 2021/4 2021/7 2021/10 2022/1
Transform Approach to Data Collection

EHR Systems

- **I-SPY COVID Study System**
 - **EHR Integration for seamless data capture for care and trials**
 - Automates capture of demographics, medications, and labs
 - Supports decisions for both clinical care and research
 - Facilitates capture of *initial screen* and *daily data check list*
 - summaries/trial reports can be back to EHR system (notes)
 - **Generalizable approach across sites and EHR systems**
 - **Implementation in 8 sites to date, 8 more by June**
 - **Time savings dramatic**

Support from BARDA made the system integrations and implementation possible
Centralized monitoring can help detect adverse events much sooner than on-site monitoring.

On-site monitoring does not allow for detection of patterns across time & sites.

Aggregate view of data in our trial platform allows for detection of concerning patterns.

Figure adapted from: Stansbury et al., Risk-Based Monitoring in Clinical Trials: Increased Adoption Throughout 2020, Therapeutic Innovation & Regulatory Science (2022)

Laboratory Events (Grade 3-4)

Includes CTCAE v5.0 events that may not be drug related and per protocol nor reported as a formal AE, SAE, AESI or IRAE

<table>
<thead>
<tr>
<th>Laboratory Events</th>
<th>All Interventions vs Control</th>
<th>Agent A vs Control</th>
<th>Agent B vs Control</th>
<th>Agent C vs Control</th>
<th>Agent D vs Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Clinically important events can be assessed in setting where disease has high rate of events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk-based monitoring can increase data quality, and enhance patient safety: But not well accepted across oversight agencies such as BARDA

More Efficient Monitoring
Centralized monitoring allows targeting of on-site activities, so trial staff to focus on what matters

Cost Reduction
Risk-Based monitoring can reduce trial cost

Improved Data Quality
Centralized Monitoring employs statistical techniques that can detect outliers and anomalies that could indicate fraud

Earlier detection
Performance metrics can help detect and address compliance issues early

Easier collaboration
Digital tools enable more frequent communication between monitors, data managers, and site staff

Enhanced Patient Safety
Centralized monitoring allows early detection of adverse events

There is a growing consensus that risk-based approaches to monitoring, focused on risks to the most critical data elements and processes necessary to achieve study objectives, are more likely than routine visits to all clinical sites and 100% data verification to ensure subject protection and overall study quality

Observations

• Endpoints
 • Time to recovery was initial endpoint, but mortality added as co-primary within 4 months of opening the trial
 • Mortality is likely a better endpoint, but varies with time as well as by site (and patient mix)
 • Concurrent controls important, but smaller numbers of controls add some variability

• Efficiency in data collection can and should be improved
 • Normalizing lab values using Ref range upper limit of nl facilitates grading

• Timing of consent
 • Initially a 2 step consent (4 active agents): Are you willing to participate in study → Randomize → consent to assigned arm
 • Transition to 2 active agents: Consent → randomization

• RWD very helpful and confirmed importance of randomization, concurrent controls
 • Observational patients have lower risk than randomized patients
 • Underlines importance of tracking outcomes for ALL patients as a standard of care→ transformative
Future

• Implement OneSource at all sites to decrease time required for high quality data, integrate care and research
• Integrate real time biomarker assessment, recognizing heterogeneity
• Integrate disease classification prospectively
 • Anticipate the future of care in the conduct of trials
• Build agent combinations into the study
 • Augment adaptive, virus-specific immunity
 • Ameliorate secondary inflammatory effects of tissue injury
 • Prevent later deterioration and accumulation of injuries from other sources.
 Reduce risk for secondary complications – organ failure, infections, reduce time on ventilator, RRT etc
 • Vascular-endothelial
 • Tissue injury, repair
OneSource Acknowledgements

UCSF / CERSI
Laura Esserman (Project PI)
Adam Asare (Co-Investigator)
Kathleen Liu (Co-PI)
Carolyn Calfee (Co-PI)
Heidi Collins (Co-Investigator)
Anna Northrop (RA)
Anne Patterson (RA)
Alejandra Jauregu (RA)

FDA CDER
Mitra Rocca (FDA Lead PI)
Gideon (Scott) Gordon (PM/SME)
Jacqueline Corrigan-Curay (SME)
Courtney McGuire (SME)
Laura Lee Johnson (SME)

FDA ORSI
Audrey Thomas (UCSF-Stanford CERSI PO)
Frank Weichold (SME)

BARDA
Kimberly Armstrong (PO)
Peter Adams (PO)

Industry Partners
Cal Collins (OpenClinica)
Chris Weiss (OpenClinica)
Glenn Jacques (Slalom)
Mark Wheeldon (Formedix)

Abbreviation Key
PI - Principal Investigator
PM - Project Manager
PO - Program Official
SME - Subject Matter Expert
RA - Research Assistant

I-SPY COVID TRIAL
James Palazzolo
Paul Henderson
Karyn DiGiorgio
Ami Okada
Jasmine LaCoursiere
Michael Szymanski
Steven Cosari

Site Investigators
D. Clark Files (Wake Forest)
Paul Berger (Sanford Health)
Derek Russell (Univ Alabama)
Acknowledgements

This work has been supported by the FDA through the PCOR Trust Fund and through the 21st Century Cures Act Funds through the Center of Excellence for Regulatory Science and Innovation (CERSI).

This work was supported, in part, by the Biomedical Advanced Research and Development Authority (BARDA), part of HHS within the office of the Assistant Secretary for Preparedness and Response, and Joint Program Executive Office, a part of the Department of Defense, under the Medical Chemical, Biological, Radiological, and Nuclear (CBRN) Defense Consortium (MCDC).
The Diuretic Comparison Project: Practical Issues with a Pragmatic Trial

Ryan E. Ferguson, ScD, MPH
Director, Boston CSP Coordinating Center
May 2022
Chlorthalidone Versus Hydrochlorothiazide: A New Kind of Veterans Affairs Cooperative Study

Frank A. Lederle, MD; William C. Cushman, MD; Ryan E. Ferguson, ScD, MPH; Mary T. Brophy, MD, MPH; and Louis D. Fiore, MD, MPH

Investigators:

Frank A. Lederle, MD
Areef Ishani, MD
Minneapolis, VAMC

William C. Cushman, MD
Memphis VAMC

Ryan E. Ferguson, ScD, MPH
MAVERIC, Boston VAMC
Diuretic Comparison Project
Study Question

Does treatment with chlorthalidone (CTD) reduce major adverse cardiovascular events (MACE) compared with hydrochlorothiazide (HCTZ) in older veterans with hypertension?
DCP Study Design

• Prospective randomized open-label blinded-endpoint trial.
• Centralized informatics-based clinically integrated structure.
 • Embedded within EMR or backend database.
 • Clinical workflows used to facilitate training.
• N=13500 (target) 13,523 enrolled
• HCTZ users randomized to stay on current therapy or to initiate CTD
Inclusion/Exclusion Criteria

Inclusion:
1. Over age 65 years (half outcomes outside VA)
2. On HCTZ 25 or 50 mg/d from VA (not combo)
3. Most recent SBP (in CPRS) \geq 120 mm Hg, & no SBP < 120 mm Hg w/in 90 days before randomization (minimize risk, maximize benefit)

Exclusion:
1. Considered incompetent to consent
2. Death expected within 6 months
3. Na < 130 meq/L or K< 3.1 meq/L in past 90 days (enroll them later)
4. Known to be in Medicare Part C (HMO pts, no outcome data)
Study Intervention

- Drug is open-label but allocation is concealed
- Randomize to current dose HCTZ (25 or 50 mg), or half that dose of CTD (12.5 or 25 mg)
- Change to CTD → order to PCP
 - For 12.5 mg, send tablet splitter with rx
 - Reimburse pt for co-pay of discarded HCTZ
- All management by PCP (lab, drug, dose)
The primary outcome - MACE

Time to first occurrence of any of the following:

1. Stroke
2. Myocardial infarction
3. Urgent coronary revasc 2° unstable angina
4. Hospitalization for acute decompensated HF
5. Non-cancer death
Simplified DCP Workflow

1. Aggregate EHR data
2. Ongoing clinical care
 - DCP eligibility assessed
 - Eligible patient identified
3. Patient and provider engaged to participate
4. Usual care activities
Pragmatic Features:

1) Design with technology as a force multiplier
2) Embedded within VA Information Systems & EMR
 • find eligible patients using VA EMR
 • centralized recruitment and enrollment
 • centralized placement of notes & orders
 • PCPs: permission & pt care (including study drug)
 • centralized collection of outcomes from EMR database
Pragmatic Features:

3) Clinical sites not “engaged in research” - no local personnel (10% cost)

4) Telephone based informed consent for participants with a clinical assent to maintain clinical autonomy

5) Minimal perturbation of the clinical workflow. Study designed to “fold into” PCP processes
Lessons Learned

• Adaptability of the EHR is the *sine quo non* for pragmatic embedded trials.

• Alignment of incentives is important.

• Focus groups for implementation:
 • Providers – clinical autonomy, consent, buy-in.
 • Patients – worry about a lot less than we worry about.
Lessons Learned

• Design of projects:
 • Limitations of real-world data need to be accounted for and mitigations/controls built into system

• Data Systems:
 • Robust algorithms for ascertainment planned and operationalized prior to launch
 • Accuracy and Cleanliness of Data are not perfect – secondary use of medical record reshapes convention
Closing

• Reduction in barriers to participation has a real-world impact.
 • Consent rates higher than traditional trials.
 • Assent rates and PCP participation higher than other CSP trials
• Use of real-world data from healthcare settings is challenging, but a reality for the clinical trials enterprise.
Breakout Groups
Breakout Group Overview

Objective: Help to refine CTTI’s draft recommendations

Logistics:

- 4 Groups: Operations, Data, Tech Implementation, Future Directions
- Breakouts will be 60 mins long and recorded
- Each participant will quickly introduce themselves (state name, role, and organization- <1 min each)
- Facilitator will ask the discussion questions
- After 60 mins follow the prompt to reconvene to the main session, then take a 10 min break.
- Reconvene at 1:40 pm ET for a recap (provided by each facilitator)

Here’s to a great discussion!......Now get ready to transfer.....
Elements of a trial that are possible to embed

- Eligibility criteria
- Medical History and Concomitant Meds
- Informed Consent
- Randomization
- Intervention
- Trial Data Acquisition
- Results
Operations Breakout Group

How do we encourage participation in embedded research at all levels?

Health care leadership:
- What health care setting changes are needed (administrative/personnel, equipment, etc.) to enable embedded research?
- What commitment and resources are needed to facilitate patient engagement and increase awareness of research?

Health care providers:
- How can we address concerns about accountability and liability?
- What types of financial recognition and incentives are needed?

Patients:
- What recruitment approaches as part of routine care will be successful and not disruptive?

Study Designers:
- What types of questions would you ask in a decision framework for whether to embed elements of a trial into care?
- What type of study questions are appropriate for embedding trial elements?
1. What type of reusable data and technology infrastructure is needed?

2. How can we repurpose EHR data for research purposes (trial databases) in the most cost-effective and least disruptive manner?

3. How can an EDC platform (to collect supplemental trial-specific data not captured in the EHR) be integrated into the clinical workflow?

4. What is required to ensure data quality, traceability, and adequate regulatory oversight? (Sponsors and regulators may need access to data)

5. What would you add or change to CTTI’s recommendation #3 to ensure that data collected for embedded trials are relevant, reliable, and of sufficient quality? (see next slide)
Recommendation #3
Ensure available data sources used for embedded trials are fit for purpose – relevant, reliable, and of sufficient quality

Relevant
- Use data collected during routine care as the primary, foundational source data.
- Collect the least amount of data necessary to answer the research question.

Reliable
- Appreciate the intention and potential consequences of clinical care data collection and use.
- Validate the reliability of the clinical data through manual and automated data checks.

Sufficient Quality
- Perform a feasibility assessment to assess data missing-ness and determine the availability of supplemental data to fill gaps.
- Ensure that clinical data incorporated into a trial database are complete, plausible, accurate, and traceable.
- Develop strong data privacy and security plans.

Consult early and often with regulatory authorities on data quality questions.
Tech Implementation Breakout Group

Reusable data and technology infrastructure for embedding elements of trials

1. How can technology facilitate the planning and operational execution of embedding trial elements?

2. What funding will be needed and from what funding sources?
 - Are there innovative funding models that should be explored?

3. How can EHR vendors be involved? Can we encourage certain trial elements to be routinely incorporated into their systems?

4. How can technology support patient engagement with embedded trials?

5. If time allows: What have been the most instructive experiences to date for incorporating innovative technology solutions into the planning, design, and execution of embedded trials?
Future Directions Breakout Group
Future Directions for Embedding Trial Elements Across Health Care Settings

1. What needs to happen in the U.S. to build sustainable research networks that can support and execute embedding trial elements?

2. What are the “asks” of key government agency leaders (e.g., FDA, NIH, CMS) to support, incentivize, and encourage funding organizations to embed more trials for regulated medical products?

3. How can sponsors be encouraged to conduct trials using embedded elements? What are the real or perceived barriers to implementing these trials for use in regulatory decision-making?

4. How can CTTI take a more pro-active stance to help drive the uptake and adoption of embedded trials?
Transfer back to main session
(then take a 10 min break)
Break
Return at 1:40
Breakout Debrief
Opportunities to Implement CTTI Recommendations
CTTI Project Draft Draft Recommendations
Kraig Kinchen, Eli Lilly and Company
CTTI Strengths

- **Multi-stakeholder** public-private partnership co-founded by FDA and Duke University
 - Involvement of ±500 individuals and groups
 - Participation from ±80 member organizations
 - All stakeholders have an equal voice

- **Evidence-based** research methods
 - Stakeholder interviews, focus groups, surveys
 - Systematic literature reviews
 - Expert meetings

- **Impactful** products, tools and engagement
 - Case Study Exchange
 - Policy adoption
 - Organizational-level adoption
“The best big idea is only going to be as good as it’s implementation”

- Jay Samit (author)
Purpose of Recommendations & Target Audience

- **Purpose**: Facilitate the fit-for-purpose integration of randomized, interventional trials into clinical care

<table>
<thead>
<tr>
<th>Target Audience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinicians interested in conducting research</td>
</tr>
<tr>
<td>Research sponsors</td>
</tr>
<tr>
<td>Health care settings</td>
</tr>
<tr>
<td>Regulatory bodies</td>
</tr>
<tr>
<td>Operational technology providers</td>
</tr>
<tr>
<td>Clinical Research Organizations</td>
</tr>
<tr>
<td>Patient advocacy groups</td>
</tr>
<tr>
<td>Health system leaders</td>
</tr>
<tr>
<td>Funders</td>
</tr>
<tr>
<td>Payers</td>
</tr>
</tbody>
</table>
Road to Implementation: Open Discussion

- How do we best communicate the rationale for embedding trials?
- Are the key players ready to implement the recommendations?
What does success look like?

How would implementation of the recommendations enable the achievement of a successful outcome?
Poll

1. Are there potential trials, in early planning phases, that might benefit from implementation of the CTTI recommendations?

2. Are you aware of organizations that are looking to make advances with embedding trials?
This summer, CTTI Project team will:

- Incorporate your input and refine the draft recommendations
- Develop supporting tools (e.g. a Decision Tree for embedding trials)

Expert Meeting #2: Wednesday, September 21st (in person in Washington D.C.)

- Potential Meeting Objectives:
 - Develop an implementation strategy for how these recommendations could be applied to different scenarios
 - Develop metrics of recommendation implementation and potential impact

Be on the look out for the 2nd Expert meeting invitation. Let’s implement what you’ve helped to create!
“Without deviation from the norm, progress is not possible.”
– Frank Zappa

THANK YOU

www.ctti-clinicaltrials.org