Discordant MIC Analysis: Testing for Superiority within a Non-inferiority Trial

Dean Follmann, Erica Brittain, and John Powers
National Institute of Allergy and Infectious Diseases
November 19, 2014
Current Anti-infective Drug Landscape

- Efficacy typically demonstrated with non-inferiority trial: comparing new Drug B to control Drug A

- CI of difference in success rates needs to exceed some *margin* M

```
Favors A  Favors B

-M  0

B unacceptably worse  B not unacceptably worse
```
Dual Goal

• Goal 1: Demonstrate Drug B is active (better than placebo)
 – Established indirectly: must know magnitude of A’s benefit over placebo, M_1. B must then be within M_1 of A

• Goal 2: Demonstrate that Drug B is similar to Drug A
 – By showing difference is less than M_2, which is \textit{clinical-judgment} based acceptable loss in efficacy

• To satisfy both goals: $M = \min(M_1, M_2)$
• With current approach: if no historic data sufficient to set M_1, no way forward
A Pharmacometric-based Approach to Estimate M_1

- Ambrose et al (2012)

- Using a one arm sample of patients treated with Drug A: model and estimate success rates as function of AUC:MIC
 - Estimate success at very high AUC:MIC value
 - Estimate success at very low AUC:MIC (proxy placebo)
 - Difference is considered the treatment effect of A vs placebo

- Lower bound of a 95% CI of this synthetic treatment effect can serve as an estimate of M_1
More on One Sample Approach

• But, not a randomized comparison
 – High AUC:MIC patients may be healthier.
 – Low AUC:MIC may identify pathogens that are harder for natural immunity to defeat
 – Crux: we do NOT know how these same patients would do with placebo

<table>
<thead>
<tr>
<th>Drug</th>
<th>Success Rate with Very High AUC:MIC</th>
<th>Success Rate with Very Low AUC:MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90%</td>
<td>60%</td>
</tr>
<tr>
<td>Placebo</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Can We Improve This Strategy with Randomization?

• Hidden within an ordinary non-inferiority anti-infective trial are precious sub-trials well placed to show superiority
Consider Four Interesting Subgroups: Where Overall Success Rates are 80% in Both Arms

MIC Drug A

<table>
<thead>
<tr>
<th>Low MIC Drug A</th>
<th>High MIC Drug A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug B 70%</td>
<td>Drug B 70%</td>
</tr>
<tr>
<td>Drug A 90%</td>
<td>Drug A 70%</td>
</tr>
<tr>
<td>Drug B 90%</td>
<td>Drug B 90%</td>
</tr>
<tr>
<td>Drug A 90%</td>
<td>Drug A 70%</td>
</tr>
</tbody>
</table>
Key Idea: Test for Superiority of B to A Where Most Likely to Find it

• Potentially get evidence of B’s activity DIRECTLY within the trial!
 – Test **superiority** of Drug B to Drug A in the discordant MIC subgroup of patients – who are highly susceptible to B and not so susceptible to A
 – Then, conclude B is active – one of our dual goals

 – Don’t need that hard-to-get historic evidence about the magnitude of A’s benefit over placebo, M₁!

 – Required assumption: A is not worse than placebo in subgroup
 • remember A is approved

• (Focus now on MIC as our marker of success prediction
 – AUC:MIC is trickier – more on this later)
Proposed Demonstration of Efficacy when M_1 Unknown

• Recall dual goal:
 – B has activity and B is similar in overall efficacy to A

• Decide on a clinically acceptable margin M_2 e.g. 10%.

• Efficacy supported if
 – Overall NI margin of 10% (M_2) is met AND
 – Good outcome on pre-specified test of superiority of B over A shown in patients for whom it is a priori most likely
 • High MIC-A/low MIC-B subgroup
 • The patient in the `sweet spot’’ (using Discordant MIC model)
 • Patients with high MIC-A (e.g., Advisory Committee 2012: Televancin vs Vancomycin results in s. aureus and MIC-V>1; p<.05)
Discordant Regression Method

• Only analyzing patients in the Low MIC-B/High MIC-A subgroup is likely to be statistically inefficient
• So, use all data with logistic regression to estimate response surface
• Log odds of success on B to success on A:

\[
\beta_0 + \beta_1 Z + \beta_2 \text{MIC-A} + \beta_3 \text{MIC-B} + \beta_4 Z \text{MIC-A} + \beta_5 Z \text{MIC-B}
\]

 – Z= 1 drug B (0 Drug A)

• Test \(H_0: \beta_1 + \beta_4 a_0 + \beta_5 b_0 = 0 \)
 – Procedure is point-wise, so need to pre-specify a single “sweet spot” (MIC-A=a_0, MIC-B=b_0) to have correct Type I error rate

• Simulations done with 200/arm, range of correlations between MIC-A and MIC-B, range of relationships between MIC & outcome
Patient Got Drug B and had Success

Patient got Drug A and Failed

Sweet Spot B beats A

p = .01
Simulation Study Results Suggest Method Will Have Reasonable Power When:

• Clear relationship *in the trial*:
 – Between MIC-A and success on Drug A, and
 – Between MIC-B and success on Drug B

• Little relationship between response and MIC to *other* drug

• MIC-A and MIC-B are not highly correlated

• Selected sweet spot is a powerful spot to test
Advantages

• Encourages sponsors to design for superiority
 – So that rigor is rewarded instead of punished
 – Try to avoid patients who cure spontaneously or who do not have bacterial disease

• Get *direct* evidence that B has activity, instead of relying on external data
 – External data might not be relevant

• But, challenges remain...
Challenge 1: How to use AUC:MIC ratio?

• AUC: MIC has (much?) stronger relationship to success than MIC
 – Much greater variability within a trial
 • (Side Question: are patients with high MIC to his/her randomized drug tossed out? If yes, is it compatible with ITT?)

• Problems with using AUC:MIC
 – AUC is a post-baseline covariate
 – AUC to A inherently missing in those randomized to Drug B, and vice versa
 – Currently only measured in subset of B – and none in A
Challenge 1: Using AUC:MIC

• Solutions?

• Augmentation:
 – Crossover patients twice to get their AUC to each drug at end of regular follow-up
 • but this requires (strong & untestable) assumptions

• Baseline models (More promising?):
 – Could use baseline characteristics to predict AUC
 • Prediction models exist, but how relevant?
 • If AUC were measured in both arms, could develop within-trial predictions of AUC using baseline data (age, gender, weight,...)
Challenge 2: Selection of Sweet Spot

• The discordant MIC regression analysis is point-wise, and thus to protect Type I error rate, we need to pick a single point *a priori*

• Could use a simultaneous approach to testing, but this is non-targeted and thus much more conservative

• Simple approach: pick observed value that is closest in Euclidean distance to (Max observed MIC-A, 0) point
 – But depending on the true model, this may not be optimal point

• Alternative: adaptive selection of sweet spot, using (half) blinded mixture models looks very promising
Challenge 3: Feasibility

- Enhance power by pooling multiple studies
 - Should not increase usual sample size requirement

- Feasibility probably highly dependent on the context of each given study setting. Evaluate power in Phase 2:
 - Relationship between MIC and outcome within arm
 - Also explore viability of using AUC:MIC
Summary

• New paradigm for demonstrating efficacy if inadequate historic data to know treatment effect of control drug A
 – Pick a clinically acceptable margin for total sample PLUS
 – Test for superiority where it’s most likely to be present

• Encourages a careful design/conduct to show superiority

• Current work:
 – Extension to AUC:MIC
 – Better procedures / sweet spot
 – Consideration of real world feasibility