Piloting the National Cardiovascular Research Infrastructure: The SAFE-PCI for Women Trial

Sunil V. Rao MD
Associate Professor of Medicine
Duke University Medical Center
Duke Clinical Research Institute
Disclaimer

The views and opinions expressed in this presentation are those of the individual presenter and do not necessarily reflect the views of the Clinical Trials Transformation Initiative.
SAFE-PCI for Women

- Background and Rationale
- NCRI construct
 - Advantages
 - Challenges
- Trial results
- Lessons Learned
SAFE-PCI for Women

- Background and Rationale
- NCRI construct
 - Advantages
 - Challenges
- Trial results
- Lessons Learned
The rate of radial approach is lower in the US compared with other countries.

Lack of education and perhaps lack of large US-based randomized data may be responsible.

Large appetite for a randomized trial looking at clinical outcomes.

Challenge #1 is randomization:
- Femoralists unable to randomize to radial
- Radialists unwilling to randomize to femoral

Challenge #2 is funding.
Post-PCI Bleeding and Vascular complications

1-year Mortality

<table>
<thead>
<tr>
<th>Access site</th>
<th>Hazard ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted</td>
<td>1.82 (1.17–2.83) 0.008</td>
<td></td>
</tr>
<tr>
<td>Non-access site</td>
<td>3.94 (3.07–5.15) <0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Bleeding Risk

- **Overall**
 - Hazard ratio: 1.46 (1.22, 1.73)

- **Women**
 - Hazard ratio: 1.72 (1.30, 2.28)

Incremental Cost

- Death: $19,208
- CABG: $31,104
- Stroke: $13,929
- Renal: $21,468
- Vascular: $4,200-4,800

Post-PCI Bleeding and Vascular complications

Kugelmass A, AJC 2006

Verheugt F, JACC Intv 2011

Alexander K, et. al. Circ 2006
Radial approach

- Women significantly underrepresented in prior trials
- Women present a unique challenge
 - Higher bleeding risk but radial approach underused
 - Smaller radial arteries
 - Potentially higher transradial procedure failure rate

Bertrand OF, et. al. AHJ 2012
Feldman DN, et. al. Circ 2013
SAFE-PCI for Women

- Background and Rationale
- NCRI construct
 - Advantages
 - Challenges
- Trial results
- Lessons Learned
Study of Access site For Enhancing PCI for Women (SAFE-PCI for Women)*

Female patient undergoing urgent or elective PCI

Best background medical therapy
Bivalirudin, Clopidogrel, Prasugrel
2b3a at investigator’s discretion

N=1800 pts, 30 sites
Sites from NCRI
Patient hemostasis required
Vascular closure devices allowed

Radial

Primary Efficacy Endpoint: BARC Types 2, 3, or 5 bleeding or Vascular Complications requiring surgical intervention

Primary Feasibility Endpoint: Procedural failure

Secondary endpoints: Procedure duration, total radiation dose, total contrast volume

Femoral

*Planned in collaboration with ACC, CSRC, FDA Office of Women’s Health
Methods – The National Cardiovascular Research Infrastructure

- Embeds randomization into the NCDR CathPCI Registry®
- Mechanism for identifying appropriate trial sites
- Leverages the workflow of registry participants by electronically exporting trial-relevant data into an electronic case report form
 - Reduction of redundant data entry (~60% data needed for study patients from CathPCI registry)
 - Reduced trial costs due to reduced site-level workload
- Data output using CDISC SDTM standards
- 21 CFR 11 compliant – IND and IDE applications
Site identification
Using actual data rather than PI recall!

NCDR PCI records from 2009Q3 through Jan 2011

NATIONAL CARDIOVASCULAR RESEARCH INFRASTRUCTURE
Methods - SAFE-PCI for Women workflow

Randomization

Demographics
Medical Hx
Procedural data

Autopopulate

Unique pages for trial

Analytic Database

ORACLE

NCDR®
National Cardiovascular Data Registry

CathPCI Registry®
NCRI - Advantages

• Streamlines data collection/entry
• Encourages collaboration between multiple stakeholders at the site level
 – Research coordinators
 – Registry coordinators
 – Site Pis
 – Quality managers
• Minimizes costs by reducing site payments
• Costs are generally up front – creation of the software interface
NCRI Disadvantages

• Specific to the clinical trial data platform (e.g. InForm)

• Registry often is disease state specific
 – Data input may be automated and not conform to clinical trial schedule
 – Fees for change may be high and not accounted for in study budget

• Multiple stakeholders = multiple priorities

• Collaboration can be challenging at the site level
SAFE-PCI for Women

- Background and Rationale
- NCRI construct
 - Advantages
 - Challenges
- Trial results
- Lessons Learned
Methods – Patient population

Inclusion
- Age > 18 years
- Female patient undergoing elective or urgent PCI or
- Undergoing diagnostic angiography to evaluate ischemic symptoms with the possibility of PCI
- Have capacity to sign informed consent

Exclusion
- Conditions precluding safe arterial access
 - Non-palpable radial or femoral pulses
 - Bilateral abnormal Barbeau tests
 - Hemodialysis AV fistula or graft in arm to be used for arterial access
 - INR ≥ 1.5 if on warfarin
- Bilateral IMA grafts
- Planned staged PCI within 30d of index PCI
- Valvular heart disease requiring surgery
- Planned RHC
- Primary PCI for STEMI

Two cohorts specified:
- **Total randomized** – all women who are randomized regardless of whether they undergo PCI
- **PCI cohort** (primary analysis cohort) – Guidewire exiting the guide catheter for diagnosis or treatment and therapeutic anticoagulation given
Primary efficacy endpoint

- **BARC Bleeding**
 - Type 2: Overt, actionable bleeding not meeting criteria for type 3, 4, or 5 bleeding
 - Type 3:
 - Overt bleeding with hgb drop ≥ 3 g/dL (corrected for transfusion)
 - Transfusion with overt bleeding
 - cardiac tamponade
 - bleeding requiring surgical intervention or intravenous vasoactive drugs
 - intraocular bleeding or ICH
 - Type 5: Fatal bleeding

- **Vascular complications requiring intervention**
 - AV fistula
 - Pseudoaneurysm
 - Arterial access site occlusion

Primary Feasibility Endpoint

- **Access site crossover**
 - Inability to complete the procedure from the assigned access site

CEC Adjudication of all suspected bleeding or vascular complication events
Methods

• **Sample size calculation**
 – Rate of BARC-type bleeding in NCDR CathPCI Registry among women without STEMI ~ 8.7%\(^1\)
 – Assumptions
 • Femoral access bleeding or vascular complication rate – 8%
 • 50% reduction with radial access; 1576 patients provides 90% power at alpha 0.05
 • Sample size increased to 1800 due to uncertainty around event rates
 • 3000 women randomized to obtain 1800 women undergoing PCI

• **All primary analyses performed by modified intention-to-treat**

• **Primary analysis in PCI cohort; Sensitivity analysis in Total Randomized Cohort**

• **Three subgroups examined for primary efficacy endpoint**
 – Prespecified in PCI cohort: ACS vs. non-ACS, Site radial volume
 – Post-hoc in Total Randomized Cohort: PCI vs. no PCI

\(^1\)Rao SV, et. al. *JACC Intv* 2013
Trial conduct

• After 1120 women had been randomized, routine review of trial endpoints by DSMB
 – Primary efficacy event rate markedly lower than expected
 – Trial unlikely to show a difference at the planned sample size
 – Recommended termination of the trial

• No harm noted in either the radial or femoral groups

• Steering committee voted to continue study until enrollment in a quality-of-life substudy was complete (N=300)
Results - Final Recruitment

1787 women randomized
At 60 US sites

893 women assigned to Radial
894 women assigned to Femoral

891 women
345 underwent PCI
ITT: Primary 72 hr or discharge endpoints
884 women
345 underwent PCI

290 PCI pts
Secondary 30-day endpoints
292 PCI pts

96.7% of sites enrolled ≥ 1 patient
70.9% of sites enrolled ≥ 10 patients
Results – Primary efficacy and feasibility endpoints

PCI cohort

<table>
<thead>
<tr>
<th></th>
<th>Radial (N=345)</th>
<th>Femoral (N=346)</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARC 2, 3, 5 bleeding or Vasc Complications</td>
<td>1.2%</td>
<td>2.9%</td>
<td>0.4 (0.1-1.3)</td>
<td>0.12</td>
</tr>
<tr>
<td>Access site crossover</td>
<td>6.1%</td>
<td>1.7%</td>
<td>3.6 (1.5-9.2)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

- Interactions for primary efficacy endpoint not significant for ACS vs. Non-ACS, tertiles of site radial volume
- Most common reason for needing to convert from radial to femoral access to complete the procedure was radial artery spasm (42.9% of crossovers)
Results – Primary efficacy and feasibility endpoints
Total randomized cohort

<table>
<thead>
<tr>
<th></th>
<th>Radial (N=893)</th>
<th>Femoral (N=894)</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARC 2, 3, 5 bleeding or Vasc Complications</td>
<td>0.6%</td>
<td>1.7%</td>
<td>0.3 (0.1-0.9)</td>
<td>0.03</td>
</tr>
<tr>
<td>Access site crossover</td>
<td>6.7%</td>
<td>1.9%</td>
<td>3.7 (2.1-6.4)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

- Interaction term for primary efficacy endpoint not significant for PCI vs. no PCI
- Most common reason for needing to convert from radial to femoral access to complete the procedure was radial artery spasm (43.6% of crossovers)
- Only one patient did not have the procedure successfully completed – was randomized to femoral
SAFE-PCI for Women

- Background and Rationale
- NCRI construct
 - Advantages
 - Challenges
- Trial results
- Lessons Learned
Lessons learned

- Get all parties involved EARLY
- Budget for the unexpected
- Consider the different missions of the registry vs. the trial
 - SAFE-PCI for Women – FFR example
- Control the “trialist urges” and streamline the data collection
- Don’t overestimate the cost savings
 - Comes from reduced site work/payments
 - Adjudication may be needed
 - Core labs may be needed