Current Issues in Device Development and Approval – An Academic Perspective

Laura Mauri, MD, MSc
Brigham and Women’s Hospital
Harvard Clinical Research Institute
Disclaimer

The views and opinions expressed in this presentation are those of the individual presenter and do not necessarily reflect the views of the Clinical Trials Transformation Initiative.
Academic Criticism of Medical Device Approval

- Clinical trials not always performed for new product approval
- Clinical trials frequently not randomized
- Clinical trials are small
- Clinical trials are exclusive (sites, patients)
“Opening the FDA Black Box”

Drug pivotal trial design is variable across indications:

- one RCT instead of 2
- lack of active comparator
- non-inferiority design
- surrogate endpoints
- non randomized trials
- short trial durations (e.g. <6m)

“Opening the FDA Black Box”

Premarket approval (PMA) commonly includes single arm studies

510K pathway and PMA supplements for medical devices often approved without clinical testing

Limited breadth of trial populations

Trials for approval focus on narrow clinical inclusion criteria

Even with broader criteria, <50% eligible subjects provide consent

Unrepresented patients have higher rates of adverse outcomes

What is unique about devices?

Iterative improvement based on mechanical design

Failure mode may be predicted by either bench testing or detected in early single arm safety studies

Short product life cycle
Range of appropriate trial designs

- Bare metal stent primary failure mode is known – incomplete expansion
- Small procedural single arm studies are sufficient for approval
Prosthetic Heart Valves: Objective Performance Criteria Versus Randomized Clinical Trial
Gary L. Grunkemeier, PhD, Ruyun Jin, MD, and Albert Starr, MD (Ann Thorac Surg 2006;82:776–80)
Prior Experience Developing an OPC for BMS

Application of models for multivariate mixed outcomes to medical device trials: coronary artery stenting

A. James O’Malley¹,*†, Sharon-lise T. Normand¹,² and Richard E. Kuntz³

- >5000 patients with 1 year follow up in RCT
- Multivariate OPC with modelling of impact of known risk factors for restenosis as empirically observed
Dual Antiplatelet Therapy Study

March 2008 Statement of FDA Principles:

• A need for a large, pragmatic public health trial exploring the benefit of extending thienopyridine treatment beyond one year in patients treated with DES needs to be done expeditiously

• FDA expects that the results of the study will change clinical practice and provide valuable new information in product labeling for DES.
DES n = 23,212
BMS n = 2,986
Completed enrollment

All patients on aspirin + open-label thienopyridine therapy for 12 months
1:1 Randomization at month 12

50% of patients continue on Dual Antiplatelet Therapy

50% of patients receive aspirin + placebo

Total 33 month patient evaluation including additional 3-month follow-up

Mauri, Kereiakes et al AHJ December 2010
www.daptstudy.org www.clinicaltrials.gov – NCT00977938
Randomization completed 2012

<table>
<thead>
<tr>
<th>Study</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic EDUCATE</td>
<td>812</td>
</tr>
<tr>
<td>Cordis CYPRESS</td>
<td>804</td>
</tr>
<tr>
<td>Boston Scientific Liberte PAS</td>
<td>2202</td>
</tr>
<tr>
<td>Abbott Xience V USA</td>
<td>868</td>
</tr>
<tr>
<td>HCRI DAPT-DES</td>
<td>5281</td>
</tr>
<tr>
<td>HCRI DAPT-BMS</td>
<td>1689</td>
</tr>
</tbody>
</table>

DES n = 9,967

BMS n = 1,689

Primary Endpoint Results Expected 2014
Dual Antiplatelet Therapy Study

- FDA – streamlining and active engagement in study execution
- Academia – simplified data collection, limited secondary data collection, but adjudication of key endpoint data
- Industry – cooperative interaction, willingness to support a study to advance clinical practice without competitive value
- Patients and physicians -- enthusiastic participation and enrollment
Quality in medical device evaluation

Each study with a specific objective
Designed to address key areas of uncertainty
Tested in a population with unmet need
Comparison of efficacy and safety to current standards of care
Feasible to conduct
Reliable to make inference from to clinical practice
Examples

1. Objective performance criteria for surgical heart valves
2. Blinded randomized trial with surrogate endpoint for renal denervation
3. Open label randomized trial compared with medical therapy with mortality endpoint for percutaneous heart valves
Academic Criticism of Medical Device Approval

- clinical trials not always performed for new product approval
- clinical trials frequently not randomized
- clinical trials are small
- clinical trials are exclusive (sites, patients)
How we achieve Quality in Clinical Research

• Well-defined objective
• Reliable results
• Feasible conduct
• Clinical impact
The Real Priorities for High Quality Trials for Medical Device Approval

1. Application of methods to maximize efficiency and minimize bias – RCT, single arm studies, surrogate endpoints, missing data

2. Expediting enrollment and follow-up completeness – Large simple trials, risk based monitoring, registry based clinical trials

3. Improving trials infrastructure – contracting, reimbursement, IRB, site selection, patient/subject engagement
Ensuring quality in clinical research

- Fulfills regulatory, business and scientific needs, but also *ethical* obligations to subjects
- Subjects volunteer time and consent to unknown risks
- These contributions are altruistic
- Trial designs that improve efficiency, minimize bias, and ensure reliable data ascertainment help fulfill an obligation to human subjects to value these contributions
Device Development and Approval – An Academic Perspective - Conclusions

• Clinical trials and programs should be tailored to address uncertainty regarding safety and effectiveness

• While RCT are the best method to eliminate bias, no one size design fits all

• Key challenges extend from design through to execution

• Ensuring quality is key to bringing medical progress to patients